Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Exp Med Biol ; 1259: 125-153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578175

RESUMO

Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Neoplasias , Microambiente Tumoral/efeitos dos fármacos , Animais , Dieta , Ácidos Graxos Ômega-6/farmacologia , Humanos , Inflamação/dietoterapia , Inflamação/patologia , Neoplasias/dietoterapia , Neoplasias/patologia
3.
Int Immunopharmacol ; 65: 580-592, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30447537

RESUMO

Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with poor outcomes, neutrophilia and lymphocytopenia. This contrasts with increased lymphocyte infiltration of tumors, which is correlated with improved outcomes. Lifestyle parameters, such as obesity and diets with high levels of saturated fat and/or omega (ω)-6 polyunsaturated fatty acids (PUFAs), can influence these inflammatory parameters, including an increase in extramedullary myelopoiesis (EMM). While tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, lifestyle choices also contribute to inflammation, abnormal pathology and leukocyte infiltration of tumors. A relationship between obesity and high-fat diets (notably saturated fats in Western diets) and inflammation, tumor incidence, metastasis and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of an inflammatory microenvironment and targeted drugs to inhibit the clinical sequelae are poorly understood. Thus, modifications of obesity and dietary fat may provide preventative or therapeutic approaches to control tumor-associated inflammation and disease progression. Currently, the majority of basic and clinical research does not differentiate between obesity and fatty acid consumption as mediators of inflammatory and neoplastic processes. In this review, we discuss the relationships between dietary PUFAs, inflammation and neoplasia and experimental strategies to improve our understanding of these relationships. We conclude that dietary composition, notably the ratio of ω-3 vs ω-6 PUFA regulates tumor growth and the frequency and sites of metastasis that together, impact overall survival (OS) in mice.


Assuntos
Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Obesidade/imunologia , Animais , Antineoplásicos/uso terapêutico , Dieta Ocidental , Humanos , Imunomodulação , Lipídeos/uso terapêutico , Neoplasias/terapia
4.
Clin Exp Metastasis ; 35(8): 797-818, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30327985

RESUMO

Epidemiological studies show a reduced risk of breast cancer (BC) in women consuming high levels of long-chain (LC) omega-3 (ω-3) fatty acids (FAs) compared with women who consumed low levels. However, the regulatory and mechanistic roles of dietary ω-6 and LC-ω-3 FAs on tumor progression, metastasis and survival are poorly understood. Female BALB/c mice (10-week old) were pair-fed with a diet containing ω-3 or an isocaloric, isolipidic ω-6 diet for 16 weeks prior to the orthotopic implantation of 4T1 mammary tumor cells. Major outcomes studied included: mammary tumor growth, survival analysis, and metastases analyses in multiple organs including pulmonary, hepatic, bone, cardiac, renal, ovarian, and contralateral MG (CMG). The dietary regulation of the tumor microenvironment was evaluated in mice autopsied on day-35 post tumor injection. In mice fed the ω-3 containing diet, there was a significant delay in tumor initiation and prolonged survival relative to the ω-6 diet-fed group. The tumor size on day 35 post tumor injection in the ω-3 group was 50% smaller and the frequencies of pulmonary and bone metastases were significantly lower relative to the ω-6 group. Similarly, the incidence/frequencies and/or size of cardiac, renal, ovarian metastases were significantly lower in mice fed the ω-3 diet. The analyses of the tumor microenvironment showed that tumors in the ω-3 group had significantly lower numbers of proliferating tumor cells (Ki67+)/high power field (HPF), and higher numbers of apoptotic tumor cells (TUNEL+)/HPF, lower neo-vascularization (CD31+ vessels/HPF), infiltration by neutrophil elastase+ cells, and macrophages (F4/80+) relative to the tumors from the ω-6 group. Further, in tumors from the ω-3 diet-fed mice, T-cell infiltration was 102% higher resulting in a neutrophil to T-lymphocyte ratio (NLR) that was 76% lower (p < 0.05). Direct correlations were observed between NLR with tumor size and T-cell infiltration with the number of apoptotic tumor cells. qRT-PCR analysis revealed that tumor IL10 mRNA levels were significantly higher (six-fold) in the tumors from mice fed the ω-3 diet and inversely correlated with the tumor size. Our data suggest that dietary LC-ω-3FAs modulates the mammary tumor microenvironment slowing tumor growth, and reducing metastases to both common and less preferential organs resulting in prolonged survival. The surrogate analyses undertaken support a mechanism of action by dietary LC-ω-3FAs that includes, but is not limited to decreased infiltration by myeloid cells (neutrophils and macrophages), an increase in CD3+ lymphocyte infiltration and IL10 associated anti-inflammatory activity.


Assuntos
Dieta , Ácidos Graxos Ômega-3 , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica/patologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias
5.
J Mammary Gland Biol Neoplasia ; 23(1-2): 43-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574638

RESUMO

Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Inflamação/metabolismo , Glândulas Mamárias Animais/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta/métodos , Feminino , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
6.
J Nutr Biochem ; 52: 92-102, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175671

RESUMO

Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta , Ingestão de Energia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
7.
Adv Exp Med Biol ; 1036: 145-156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29275470

RESUMO

Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with neutrophilia, lymphocytopenia and poor patient outcomes. This contrasts with lymphocyte infiltration of tumors, which is associated with improved outcomes. Lifestyle parameters such as high fat diet s and omega (ω)-6 polyunsaturated fatty acids (PUFA) intake may influence these inflammatory parameters including extramedullary myelopoiesis that can contribute to a metastatic "niche". While, tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, in this chapter, we also emphasize how lifestyle choices, including, obesity, high-fat and high ω-6 PUFA dietary content, contribute to inflammation and myeloid cell infiltration of tumors. A relationship between obesity and high-fat diets (notably the saturated fats in Western diets) and tumor incidence, metastasis, and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of inflammatory microenvironments and targeted drugs to inhibit the clinical sequel remain an unmet challenge. One approach, modification of dietary intake may have a preventative or therapeutic approach to regulate tumor-associated inflammation and remains an attractive, but little studied intervention.


Assuntos
Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Humanos , Neoplasias/patologia
8.
Oncotarget ; 7(12): 15215-29, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26934655

RESUMO

Aberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated. Results showed that as single agents 13-197, BI2536 and vismodegib significantly decreased neuroblastoma cell growth and induced apoptosis by targeting associated pathways/molecules. In combination with topotecan, 13-197 did not show significant additive/synergistic effects against neuroblastoma. However, BI2536 or vismodegib further significantly decreased neuroblastoma cell growth/survival. These results clearly showed that vismodegib combination with topotecan was synergistic and more efficacious compared with BI2536 in combination. Together, in vitro data demonstrated that vismodegib was most efficacious in potentiating topotecan-induced antineuroblastoma effects. Therefore, we tested the combined efficacy of vismodegib and topotecan against neuroblastoma in vivo using NSG mice. This resulted in significantly (p<0.001) reduced tumor growth and increased survival of mice. Together, the combination of vismodegib and topotecan showed a significant enhanced antineuroblastoma efficacy by targeting associated pathways/molecules which warrants further preclinical evaluation for translation to the clinic.


Assuntos
Anilidas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Piridinas/farmacologia , Topotecan/farmacologia , Animais , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/patologia , Inibidores da Topoisomerase I/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Exp Hematol ; 42(2): 146-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24246745

RESUMO

This study enumerated CD45(hi)/CD34(+) and CD45(hi)/CD133(+) human hematopoietic stem cells (HSCs) and progenitor granulocyte-macrophage colony forming cells (GM-CFCs) in blood and trochanteric and femoral bone marrow in 233 individuals. Stem cell frequencies were determined with multiparameter flow cytometry and using an internal control to determine the intrinsic variance of the assays. Progenitor cell frequency was determined using a standard colony assay technique. The frequency of outliers from undetermined methodological causes was highest for blood, but less than 5% for all values. The frequency of CD45(hi)/CD133(+) cells correlated highly with the frequency of CD45(hi)/CD34(+) cells in trochanteric and femoral bone marrow. The frequency of these HSC populations in trochanteric and femoral bone marrow rose significantly with age. In contrast, there was no significant trend of either of these cell populations with age in the blood. Trochanteric marrow progenitor GM-CFCs showed no significant trends with age, but femoral marrow GM-CFCs trended downward with age, potentially because of the reported conversion of red marrow at this site to fat with age. Hematopoietic stem and progenitor cells exhibited changes in frequencies with age that differed between blood and bone marrow. We previously reported that side population (SP) multipotential HSC, which includes the precursors of CD45(hi)/CD133(+) and CD45(hi)/CD34(+), decline with age. Potentially the increases in stem cell frequencies in the intermediate compartment between SP and GM progenitor cells observed in this study represent a compensatory increase for the loss of more potent members of the HSC hierarchy.


Assuntos
Envelhecimento/fisiologia , Células-Tronco Hematopoéticas/citologia , Antígenos CD/imunologia , Células-Tronco Hematopoéticas/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...